Mass spectrometry can now allow biologists to “see” exactly how drugs work inside living cells to kill infectious microbes, according to researchers at Weill Cornell Medical College. The team hopes that this will help scientists improve existing antibiotics and design new, smarter ones to fight deadly infections such as tuberculosis.

“The development of antibiotics has been stalled for several decades and many infectious microbes have become drug-resistant,” says the study’s senior investigator, Dr. Kyu Y. Rhee, M.D., Ph.D., associate professor of medicine in the division of infectious diseases and associate professor of microbiology and immunology at Weill Cornell Medical College. “We must restock the antibiotic pipeline, and our study findings provide a powerful new approach for doing just that.”

Most tuberculosis drugs, as well as antibiotics for other infections, were developed through a combination of empirical approaches, Dr. Rhee explains. “However, it had been impossible to know what the drug was doing inside the bacteria.”

Now, Dr. Rhee and his colleagues, who include investigators from the NIH, have applied modern technologies that stem from use of mass spectrometry to directly visualize what happens when these drugs infiltrate TB cells. They can “watch,” at a basic biochemical level, what happens to both the antibiotic agent and infecting bacteria over time after the drug is administered.

In the study, published in the latest online edition of Science, Dr. Rhee’s research team exposed TB to para-aminosalicylic acid (PAS), which was developed more than 50 years ago and is still part of the multidrug regimen used to treat resistant TB. The drug was thought to work by inhibiting an enzyme used by bacteria to synthesize folates, an essential class of nutrients. “Many thus believed that the drug interfered with folate synthesis in the TB bacterium by functioning as an occlusive plug that blocked this pathway,” says Dr. Rhee.

However, researchers actually found that while it is true PAS prevents the utilization of the natural precursors used to synthesize folates, once inside TB, PAS itself also turns toxic. “PAS is an agent that uses the TB cell’s machinery to turn it into a poison. Thus, it doesn’t simply kill the cell by stopping its food supply, it also morphs into a lethal drug,” Dr. Rhee says.

The researchers also tested a different drug, sulfonamide (sulfa), which is an 80-year-old class of antibacterial agents known to defeat many infections, but not TB successfully.

“Scientists thought sulfa didn’t penetrate TB cells, but we witnessed, using mass spectrometry, that it did, in fact, enter the bacteria. But that once inside, TB bacteria were able to degrade the drug,” Dr. Rhee says. This finding suggests to researchers that it might be possible to modify the sulfa molecule so that it can withstand degradation by TB bacteria.

“Both of these findings were completely unexpected,” says Dr. Rhee. “The study findings show us that sometimes there is a profound disconnect between what we think a drug is doing and how it actually works inside cells.”

“The power of mass spectrometry is now evident, and we can’t wait to use it to test all of the current cocktail of drugs used to treat TB to find ways to improve them,” Dr. Rhee says. “Best of all will be the use of this tool to design and test the much-needed next generation of effective anti-TB agents.”

Previous articleIn Vitro Clinical Trials: Not that Far-Fetched
Next articlePfizer Pays Isis $1.25M in Scar Treatment Deal