Investigators at the Medical University of South Carolina (MUSC) made a recent discovery that could provide crucial insights into structural changes within the brain and have a profound impact on dietary habits to improve overall brain health. The new study showed that high levels of fibroblast growth factor 23 (FGF23) were associated with structural changes in the brain's frontal lobes. Findings from the new study were published recently in PLOS ONE through an article titled “Fibroblast growth factor23 is associated with axonal integrity and neural network architecture in the human frontal lobes.”

High FGF23 levels are thought to lead to the vascular calcification seen in patients with chronic kidney disease. The MUSC study showed that such a process might also affect the brain in patients without chronic kidney disease but with elevated cardiovascular risk factors.

“We found that there is a relationship between high levels of FGF23 and a form of structural compromise in the brain,” explains senior study investigator Leonardo Bonilha, M.D., Ph.D., associate professor of neurology in the MUSC department of medicine.

FGF23 is produced in bone and typically works in the kidneys and the gut to regulate levels of calcium and phosphate in the body. It is thought to be increased in people who eat a diet high in phosphates. In people with chronic kidney disease, or in those who consume a diet high in phosphates, it can be calcification of their arteries, which can cause a heart attack or stroke. FGF23 may be the reason.

“Elevated levels of FGF23 in individuals with chronic kidney disease (CKD) are associated with adverse health outcomes, such as increased mortality, large vessel disease, and reduced white matter volume, cardiovascular, and cerebrovascular events,” the authors wrote. “Apart from the well-known link between cardiovascular (CV) risk factors, especially diabetes and hypertension, and cerebrovascular damage, elevated FGF23 is also postulated to be associated with cerebrovascular damage independently of CKD.”

The MUSC team were interested in knowing if FGF23 could cause brain problems in people who had elevated cardiovascular risk factors, such as high blood pressure, diabetes, or high cholesterol. The idea was to determine if a high FGF23 level, present in people who did not have chronic kidney disease, was an indicator of problems in the brain.

Subsequently, the researchers tested the idea that FGF23 and cardiovascular risk factors put together was an indicator of problems with communication in different parts of the brain. They recruited 50 patients for the study, about half of whom had elevated cardiovascular risk factors and about half of whom did not. All of the patients had normal kidney function. The researchers used MRI to examine the connectomes in patients' brains, which was a way to see how different regions of their brains were connected. The method allows researchers to examine the white matter of the brain, which is more vulnerable to the type of stress that can occur when vessels become calcified. The frontal lobes, which control learning and complex cognitive functions, have a particularly high density of white matter and thus may be most vulnerable to this type of stress.

Moreover, the research team looked at a feature of the connectome called modularity, which can reveal how well different parts of the brain are organized. People with abnormally high modularity have higher levels of disconnection in the brain, which may indicate problems with brain health in those areas. The researchers found that, in patients with high levels of FGF23 and cardiovascular risk factors, modularity was also high.

In patients without cardiovascular risk factors, FGF23 levels were not associated with increased modularity. These results mean that FGF23 is associated with problems with brain health in people who already have high blood pressure, diabetes, or high cholesterol. As a result, elevated FGF23 levels may lead to structural damage in parts of the brain that may put people at a higher risk of stroke or problems with stroke recovery.

“It is important to understand the factors that relate to brain health because brain health is associated with aging and resilience to injury,” notes Dr. Bonilha. “For example, if you get a stroke and you already have compromised brain health, the stroke may be more severe, and you may not recover as well.”

The researchers fell the next step is to determine if lowering FGF23 levels in patients with cardiovascular risk factors can lead to better brain health or even to better outcomes following stroke. Previous work in other laboratories has revealed that FGF23 levels are elevated in people with cardiovascular risk factors and who consume a diet high in phosphates. The new results build on this finding and highlight the importance of a healthy diet in protecting the brain.

“This study is an important first step to lead to strategies to improve dietary habits and improve brain health,” Dr. Bonilha concluded.

Previous articleUniversity Flunk-Out to Genomics Pioneer*
Next articleRoche Acquires Cancer Immunotherapy Developer Tusk Therapeutics