Leading the Way in Life Science Technologies

GEN Exclusives

More »

GEN News Highlights

More »
June 29, 2010

Bind Biosciences Scores $12.4M to Progress Anticancer Nanotherapeutic

Nanoparticles comprise a targeting ligand, surface functionalization, and a polymer matrix encapsulating a payload. [© Bobby4237 - Fotolia.com]

  • Bind Biosciences secured a $12.4 million Series C-1 financing. Proceeds will be used to initiate clinical trials on Bind’s lead product candidate, BIND-014, a nanoparticle cancer therapeutic targeted to a clinically validated solid-tumor antigen. The company will also use the money to advance a second product candidate toward the clinic.

    Bind explains that its Medicinal NanoengineeringTM approach enables the development of targeted polymeric nanoparticle-based therapeutics that deliver high drug concentrations to diseased cells and tissues. This results in increased efficacy and reduced toxicity of existing and new drug compounds, the firm points out.

    The nanoparticles are designed to recognize specific proteins or receptors that are found on the surface of cells involved in disease or the surrounding extracellular matrix. Surface functionalization shields targeted nanoparticles from immune surveillance, while providing attachment for the targeting ligand through proprietary linkage strategies.

    Bind says that therapeutic payloads including small molecules, peptides, proteins, and nucleic acids such as siRNA can be incorporated into the targeted nanoparticles. The payload molecules are encapsulated in clinically validated biodegradable and biocompatible polymers that can be designed to provide the desired drug-release profile.

    The Medicinal Nanoengineering platform thus allows the company to engineer libraries of drug-encapsulated targeted nanoparticles that differ systematically in their biophysicochemical properties. Bind can also screen for targeted nanoparticles with optimal drug pharmacokinetics, biodistribution, cell- or tissue-specific targeting, and drug exposure kinetics. It says that it can manufacture candidate drug-encapsulated targeted nanoparticles using scalable unit operations.

Related content

  • Finally! A cure for the Biotech News Blues.

  • Join 110,000 colleagues who rely on GEN Highlights for breaking news and exclusive articles shaping today’s life science tools and technologies.

  • Oops! Please type your email in the following format: [email protected] An error has occurred. Please contact Customer Service at [email protected]
  • You’re all set! Thank you for subscribing to GEN Highlights.