Leading the Way in Life Science Technologies

GEN Exclusives

More »


More »
March 15, 2011 (Vol. 31, No. 6)

Process Security for Liquid Handling

Software and Hardware Solutions Provide Full Traceability Should Errors Occur

  • Error Handling and Remote Monitoring

    Click Image To Enlarge +
    Figure 3. Tecan’s CNS offers researchers the ability to remotely monitor running applications.

    With a growing reliance on automated liquid handling and high-throughput techniques, the cost of a failed or aborted processing run is increasing almost exponentially. In addition to the loss of productivity, the loss of expensive reagents or compounds can represent a significant cost to laboratories. Error-handling protocols not only safe-guard against system errors but are also an important mechanism for dealing with complex liquid-handling requirements and avoiding unnecessary loss through operator errors.

    The exact mechanisms of error handling vary widely between systems, however they all work on the basic premise of allowing the user to individually tailor the instruments response to any given error situation depending on the precise requirements of the application. By allowing the user to configure the platform for each error that may be encountered, the impact of the error can be minimized, maintaining productivity and reducing waste of samples and reagents.

    For some applications, it is important that the user is able to take corrective action at the earliest opportunity. Remote-monitoring systems allow the operator to safe-guard such processes without having to physically supervise operation of the automated platform, offering increased walkaway time.

    A variety of strategies for remote monitoring are now available. Tecan’s (www.tecan.com) CNS provides remote monitoring via an Intranet or Internet connection as well as utilizing push notification technologies using portable devices such as the iPhone®. These systems provide the operator with real-time monitoring of automated laboratory processes from multiple systems, allowing them to perform other tasks from remote locations during processing (Figure 3).

  • LIMS Connectivity

    As well as providing users with a mechanism for remotely overseeing processing, network connectivity can play pivotal roles in sample management, data handling, and traceability. It is now common practice for large and high-throughput laboratories to use complex LIMS packages to organize workloads, track samples, and securely transfer data.

    Barcode usage is often an integral part of this approach, allowing automated liquid-handling systems to identify individual samples and interrogate a central database to determine processing requirements. Seamless interconnectivity between the LIMS and the platforms also allows the creation of a detailed history for each sample, linking the sample identity to a log of the operations performed on the sample, the results obtained, and comments of events that occurred during processing. The direct communication between the platform’s software and the LIMS database provides a secure and validated audit trail, ensuring error-free data transfer and legislative compliance, as well as reducing the need for user interaction.

Related content