Leading the Way in Life Science Technologies

GEN Exclusives

More »


More »
March 15, 2011 (Vol. 31, No. 6)

Process Security for Liquid Handling

Software and Hardware Solutions Provide Full Traceability Should Errors Occur

    1. Automated liquid handling, has become an essential feature of laboratories across a broad range of disciplines, helping to increase laboratory capacity and improve the quality or reproducibility of data. While automated liquid-handling systems have obvious benefits in terms of high throughput and walkaway processing, these platforms require mechanisms for monitoring the automated process in order to provide users with confidence in the results obtained as well as full traceability for legislative purposes.
    2. For clinical and medical research disciplines in particular, ever-increasing regulatory requirements, designed to ensure patient safety, demand fast-paced development of new process security features for automated liquid-handling platforms. This article discusses the latest technological advances in laboratory automation for greater process security, covering a range of user interface, process monitoring, and error-handling innovations.
  • Instrument Operational Qualification

    Click Image To Enlarge +
    Figure 1. The MVS (Multichannel Verification System) kit from Artel is a colorimetric-based kit for liquid-handling instrument performance verification.

    Installation qualification/operational qualification has become a familiar term across a broad range of scientific sectors, referring to regulatory requirements for periodic verification of system performance. Operational qualification requirements for liquid-handling systems vary widely, depending on the instrument’s intended application, however the methods of verifying performance can be broadly divided into either gravimetric analysis or colorimetric-based technologies.

    Traditionally, gravimetric techniques have been used for validation of liquid-handling equipment—both manual and automated—sequentially performing separate measurements for each pipetting channel. While this technique is still suited to some applications, it requires integration of a balance into the liquid-handling system. The trend toward high-density sample formats has also made gravimetric analysis impractical for use with many systems.

    By contrast, colorimetric technologies offer a straightforward method for performance verification of all pipetting channels. Integrated multimode plate readers are now a common feature of automated liquid-handling installations, allowing the verification process to be fully automated, and even routinely scheduled. Several manufacturers offer colorimetric-based kits for liquid-handling instrument validation, the Artel MVS® (Multichannel Verification System) kit is an example (Figure 1).

  • In-Process Monitoring

    Click Image To Enlarge +
    Figure 2. Loading interfaces help to ensure accurate and proper placement of samples, sample carriers, and other labware.

    Full sample traceability throughout processing is a key requirement for automated laboratory systems in a clinical setting. Once samples have been loaded onto the workstation, manual interaction with the instrument should be minimal (Figure 2). Software should generate a detailed log of all actions. For a complete record, it is not only necessary to confirm the presence of each sample at every step of the process, but also the information associated with each sample.

Related content