Leading the Way in Life Science Technologies

GEN Exclusives

More »


More »
March 15, 2010 (Vol. 30, No. 6)

Exorcising "Sin" from Synthetic Bio

Continued Expansion of Controversial Field Depends on Allaying Public Concern

  • Addressing Concerns

    By carefully explaining the new field’s grounding in existing scientific regimen, we can avoid reinventing the wheel with respect to ethical and safety debates. The arguments that have historically been made about genetic engineering also apply to synthetic biology, and very few truly new questions have actually been introduced with the rise of synthetic biology. These concerns, as well as the holdovers from genetic engineering, can be integrated into our policies on a mostly voluntary, self-regulating basis, as we have done previously.

    In fact, there is no single government agency adequately equipped to deal with the preponderance of questions dealing with genetic engineering: NIH covers institutional research, the USDA and FDA take turns at regulating organisms, and the EPA is proposing to expand its own power.

    Pioneers in the field have proceeded without much centralized oversight, and, aside from the occasional dramatic intervention from the government (e.g., stem cell research), it is not unreasonable to expect we will continue with business as usual, pushing the envelope of knowledge without losing our bond of trust with the public: a bond built with careful outreach, such as the 1975 Asilomar Conference, in which safety guidelines on recombinant DNA research were voluntarily imposed.

    While another such conference may lie in our future, the most direct method we have of addressing the public’s concerns is that we are part of that public. We read the news and chat with our neighbors and colleagues and come home with interesting moral questions; we educate ourselves and each other and, together with our sponsors and institutions, come up with appropriate restrictions based on reasonable ethical and safety considerations.

    We aren’t a band of miscreants hell-bent on destroying the world, and we try to persuade others that such things do not make for a good career path—not to mention it has terrible health and dental benefits. This behavior, together with the judgment of those holding the purse strings on research funds, has been enough to prevent major genetic engineering accidents for decades, and controversial experiments have generally been avoided or left unfunded. 

    We must forge ahead, patiently educating our fellow members of the public about what we are doing and why we are doing it, pointing out that our families live in the same neighborhoods and breathe the same air as theirs. Occasionally, we might allow ourselves to be proactive and point out that, as deadly pandemics and bacterial outbreaks have frequently demonstrated—and as Professor Silver noted—Mother Nature, left to her own devices, can and will misbehave in major ways.

    We as mere mortals must have some of the valuable salves and protections in our kit that have saved countless lives from major diseases and minor infections. How is what synbio aspires to accomplish much different from the scientific regimen that produced those miraculous results?  

    In sum, we must regulate ourselves with education, funding control, self-imposed rules in professional societies and institutions, and the most valuable protection of all—an eye for danger and the guidance of our own moral compasses.

Related content