Insight & Intelligence

More »


More »
October 15, 2009 (Vol. 29, No. 18)

Automated Cell Culture with 3-D Substrate

Microcarrier System Designed to Keep Up with High-Content Screening Demand

  • Click Image To Enlarge +
    Figure 1. Human embryonic stem cells (HU-ES 16) are cultured on laminin-coated GEM. The cells are stained with alkaline phosphatase (red) and DAPI (blue). (Image and data courtesy of StemGent.)

    In recent years, there has been a significant decline in the success rate of drug candidates in clinical trials. This situation has put pharmaceutical companies under immense pressure to reduce expenses and increase productivity. As a result, drug researchers have stepped up their use of high-content screening of large chemical libraries. Larger screens, however, do not always produce more leads.

    Use of target cells in culture that more closely resembles the target organ in vivo can increase predictability. In addition, the increased biological relevance of cell lines and their drug targets decreases late attrition in trials. 

    At the same time, an increase in the use of cell-based therapeutic strategies has escalated the need for cells that are of consistent quality and in sufficient quantities.  Automated platforms are being used to meet the increased demand for in vivo mimetic organotypic cells. The ability to grow large numbers of cells in a consistent and reliable fashion is directly related to the automation of the cell culture process, sample handling, imaging, and assaying. 

    Over the last 30 years, the drug screening industry has seen a trend toward using more biologically relevant 3-D surfaces for cell-based screening. Cells interact with neighboring cells and the extracellular matrix (ECM) in vivo by means of biochemical and mechanical cues. Cell cultures that replicate real tissue interactions are better candidates for proliferation, migration, apoptosis, and tumorigenesis models.

    Currently, the vast majority of cell culture for cell-based data harvesting occurs in flat, hard, plastic dishes. It is widely accepted that this system has limitations in biological relevance, thus, a number of new scaffolds have been developed to mimic the ECM in vivo environment. Recent research has demonstrated that coating flat plasticware with reconstituted basement membrane (rBM) provides additional insights into the extracellular context in tumorigenesis and reveals differences in receptor activity in human breast cancer cells. Though such scaffolds have revealed much about cell behavior, microcarriers take 3-D biology to the next level.

  • Microcarriers

    Click Image To Enlarge +
    Figure 2. The BioLevitator R3 is a benchtop incubator and bioreactor capable of maintaining four high-density 3-D microcarrier cultures.

    Microcarriers are small spheres that can range in diameter from that of the cell up to 500 µm. Their many benefits include supporting the growth of difficult or sensitive cell types. The ideal microcarrier is made of biologically relevant and in vivo mimetic constituents. 

    Figure 1 shows human embryonic stem cells cultured on the GEM™, a microcarrier developed by Global Cell Solutions (GCS). GEM consists of an alginate core surrounded by a covalently bound molecular layer of protein. Cells cultured on GEM demonstrate more in vivo-like characteristics than those grown in 2-D flasks.

    Alginate is a particularly biologically relevant material because it has structural constituents that resemble the cell-supporting network in vivo. The molecular structure of alginate is similar to that of hyaluronic acid, which is a constituent of the extracellular matrix and has been shown to be beneficial in keeping stem cells undifferentiated. The unique porous matrix stimulates the growth of cells and allows for polarized ion transport mimicking the in vivo metabolic state. Alginate is approved by the FDA for use in humans, making it an ideal candidate for future cell-based therapeutics.

    Furthermore, a variety of protein layers such as collagen or laminin can be coated onto the alginate to accommodate the basement membrane needs of different types of cells. Human embryonic stem cells, for example, can be cultured feeder-free and expanded on purified laminin-coated GEM and retain embryonic stem cell markers as in Figure 1.

Related content

Be sure to take the GEN Poll

{{ vm.poll.Title }}

More »