Just as an international consortium was formed to map and sequence the human genome, now a group of stem cell and regenerative medicine scientists say it’s critical that such an effort be ramped up to do a similar project focused on the human embryome.

This was the key message of a panel discussion, “From Mapping the Genome to Mapping the Embryome: The Urgent Need for an International Initiative,” moderated by Michael West, Ph.D., CEO of Biotime. It took place at the World Stem Cell Summit, which is taking place this week in San Diego.

“It is becoming increasingly clear in regenerative medicine that pluripotent stem cells, embryonic stem cells, and IPs cells will be as fundamentally important to medicine as was DNA. Maybe even bigger because you can genetically engineer these cells,” said Dr. West.

Dr. West and his colleagues adamantly believe that there needs to be a large international effort aimed at mapping the cellular and molecular basis of all human life starting with the fertilized egg and working its way up to the body of the adult. This is what it is termed the embryome.

“The opportunity presented by pluripotent stem cells to manufacture for the first time in the history of medicine all of the cellular components of the human body on an industrial scale is at once both an opportunity and a challenge,” said Dr. West. “The opportunity is to build a new field we call regenerative medicine in which many currently incurable diseases are treated with cells capable of regenerating tissues afflicted with disease. The challenge relates to the complexity of the cell types in the body and our ability to manufacture products with precisely defined compositions for human clinical use.”

Dr. West went on to say that to get these different types of stem cells into the clinic, and approved by the FDA, researchers will fully need to understand all aspects of the biology of these cells. An identification and understanding of any contaminating cells will also be essential to success in this field. The question to ask is “What is in the syringe?”

Unlike recombinant DNA, continued Dr. West, the contaminants in pluripotent stem cells are alive and may make things that are undesirable at the intended point of therapy. For example, you might have a bioreactor full of cells that are making heart muscle to regenerate heart function in a patient. But you have to be careful that your cells are not contaminated with neural crest cells from the head area which could generate a tooth along with the heart muscle.

“These contaminants, if you do not remove them, can lead to years of delay in filing an IND and a runup in costs as you try to identify these cells,” explained Dr. West.

The major problem in identifying them, according to Dr. West, is that no one has ever mapped the molecular markers or even a rudimentary cell ontology tree, i.e., mapped out the tree from the fertilized egg to the cells of the human body.

“If [there were] a detailed map of all the cellular and molecular components of life from the fertilized egg to adulthood, and then databased in a manner to the information in the human genome, medicine would be the true beneficiary,” added Dr. West. “That’s why we have made this call for an international initiative.”

For more from the World Stem Cell Summit, be sure to check out “Neural Precursors ‘Cure MS’ in Mice“, “Mary Ann Liebert Wins Stem Cell Education Award“, $1M Award to Develop a Replacement Liver Announced“, and “World Stem Cell Summit: December 4, 2013 Update“.

Also, watch our video “A Brief History of Stem Cells” to see a timeline spanning over 60 years of stem cell research. 

Previous articleLilly Antidepressant Candidate Edivoxetine Flops in Phase III
Next articleTB Vaccine May Prevent MS, if Given Early