March 1, 2010 (Vol. 30, No. 5)

Victoria Echeverria
Ivar Meyvantsson
Steven Hayes

Microfluidics-Based Approach Aims to Improve Assessment of Cell Behavior and Drug Action

Metastasis is responsible for most cancer deaths, and tumor cell migration is an important part of the metastatic cascade. Understanding how tumor cells mobilize and invade other tissues, as well as how to modulate this behavior, is of great value to cancer biology and the development of therapeutics.

The most prevalent assay for tumor cell invasion involves modified Boyden chambers in which cells traverse a membrane coated with extracellular matrix (ECM). This approach requires cumbersome manual interventions that limit throughput and yields only limited information on the bulk population of cells that reach the other side of a thin layer of matrix.

In this article, we describe a microfluidics-based approach to patterning cells and ECM that delivers a much more detailed, physiologically relevant assessment of cell behavior and drug action. Cell migration is assayed in a true three-dimensional matrix that is more representative of the in vivo environment, and, because the assays are automatable, throughput sufficient for compound profiling can be readily achieved.


Figure 1. The iuvo microconduit 5250 consists of 192 channels arrayed 12 by 16 into a microtiter-sized plate.

Cellular Environment

The 3-D tumor-cell invasion assay is performed in collagen-filled channels using the iuvo™ microconduit 5250 array plate from BellBrook Labs. The plate consists of 192 microchannels arrayed onto an SBS/ANSI-compatible plate (Figure 1). Each channel can be accessed through openings or ports on either end. Being only 140 microns tall, the ultrathin assay compartment is designed to allow full access by microscopes and high-content imagers. When the channel is filled with extracellular matrix such as type I collagen, and cells are deposited in the port at one end, cell migration can be observed as cells enter the matrix-filled channel area.

As shown in Figure 2, cell migration in this assay is truly 3-D, with cells distributed across the height of the channel. As expected, cell migration is inhibited by compounds such as the myosin II inhibitor blebbistatin.


Figure 2. PC3-M cells invade into a type I collagen-filled iuvo channel in the absence (top panel) or presence of 10 µM blebbistatin (bottom panel).

Information-Rich Readouts

In contrast to filter-based methods that rely on counts of cells that traverse an ECM-coated membrane, this type of migration assay has high information content because it allows imaging of actively invading cells in the ECM compartment during the entire assay period. Since each cell is assigned an x,y coordinate, a variety of analysis methods can be employed including those based on distributions, such as median distance traveled, as well as total number of cells migrating (Figure 3). 

Analyses based on distribution and cells migrated both yield satisfactory data quality for compound profiling and screening.  Because a purely antiproliferative compound would not be expected to alter the distribution of cells within the channel, distribution-based analysis is less sensitive to effects on proliferation. Furthermore, relative effects on migration vs. proliferation can be assessed by measuring the density of cells in the loading area at the end of the assay. Migration then can be normalized for any proliferation and/or cell death that might occur during the course of the assay, allowing compounds to be binned based on their inhibition of migration relative to other activities such as proliferation and cytotoxicity. 

In addition to number of cells migrating and distance traveled, imaging of actively invading cells can provide clues to the mode of migration and the underlying mechanisms. For instance, with a clearly visible gap between almost all cells, the migration pattern of PC3M cells (prostatic carcinoma) in type I collagen can be identified as individual, as opposed to collective.  

More detailed information on migration mechanisms or pathways can be gleaned using post-assay molecular staining of cells in the channels. Both phalloidin staining and immunocytochemistry have been employed in this way. Though we have just begun to explore these methods, the ability to apply in situ high-content analysis approaches to cells migrating in 3-D ECM is a promising avenue for delineating and targeting specific cell invasion events and pathways. 


Figure 3. Quantitative assessment of inhibitors on cell migration

Laboratory Automation

The iuvo platform is designed to interface with existing lab automation, including liquid handlers and high-content analysis instruments. The spacing between input ports is 9 mm horizontally and 4.5 mm vertically. This allows a 96-channel head to dispense to all 192 channels in two steps. The entire assay, including cell addition, media changes, and post-assay staining is performed by adding or removing 2–5 µL droplets from the ports. No manual interventions of any kind are required.

Fluid flow in the channel is driven by droplet-based passive pumping, which relies on the pressure differentials inside droplets of different radii at air-liquid interfaces. For detection of cell positions, cells are stained with fluorescent nuclear dyes, imaged on automated microscopes or high-content analysis instruments, and analyzed using standard object identification algorithms.

Profiling Service

To make this assay available to researchers who do not have appropriate infrastructure, or those who may want to sample the capabilities of this platform without dedicating internal resources, BellBrook Labs offers a compound profiling service for tumor cell migration through 3-D collagen. The service couples the iuvo microconduit array plates with BellBrook’s custom-built automated microscopy station with full environmental control and 3-D imaging algorithms.

Victoria Echeverria is a scientist, cell biology; Ivar Meyvantsson is group leader, biomedical engineering; and Steven Hayes ([email protected]) is director, R&D at BellBrook Labs. Web: www.bellbrooklabs.com.

Previous articlePredicting The Future During Drug Development
Next articlePolyTherics and Zealand Ink PEGylated Peptide Therapeutics Collaboration