Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Oct 15, 2009 (Vol. 29, No. 18)

Stem Cell Technologies Boost Regenerative Medicine

Symbiotic Relationship Expected to Lead to New Therapies for Diseases

  • Mesenchymal Stem Cells

    Translation of stem cell technologies into tools of regenerative medicine is also a mission being undertaken by pharmaceutical and biotechnology companies. Case in point is recent stem cell research at Roche that is focused on the use and development of mesenchymal stem cells (MSCs), partly for the purpose of advancing regenerative medicine.

    Global alliance director Alain A.G. Vertès, Ph.D., discussed Roche’s long-term vision to develop cell therapeutics that target specific diseases and maximize patients’ clinical benefits and lower safety risks—a project that is just entering the implementation phase.

    “In addition to this therapeutic approach, Roche is also conducting research on induced pluripotent stem cells and, when necessary, human embryonic stem cells, in order to enable their use in drug discovery with the ultimate objective to develop more efficacious and always safer drugs,” said Dr. Vertès. “Initially, we will focus on leveraging the immunomodulatory properties of MSCs, however, as our knowledge of their regenerative properties increase, we hope to be able to address disease where regeneration will be the primary mechanism of action.” 

    Dr. Vertès concluded by saying that, much still needs to be learned by the scientific community and the hope is that regenerative live-cell therapeutic products could be commercialized in the not too distant future to bring innovative medicines to patients who need them.

  • Manufacturing Cell Therapies

    Another presenter from the pharmaceutical industry was Dave Smith, head of cell therapy for Lonza’s bioscience business unit. Lonza manufactures cell therapies on a large scale for a number of cell therapy companies. It is focused on manufacturing such therapies in the most cost-effective way, which requires that manufacturing process be conducted on a large scale.

    “We’re focused on scaling up production from a lot of 50 or 100 doses, to manufacturing 500 to 1,000 doses per lot, which drastically lowers the cost of goods,” said Smith. “The reason this becomes so important is that the lower the cost per dose, the broader access patients will have to the therapeutic.” Lonza has developed a number of process improvements for reducing the cost of manufacturing of stem cell therapies and will be presenting many of them at the meeting. The presentation will review the costs, the bottlenecks, and potential solutions to reduce the cost of goods.

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »