Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Sep 15, 2010 (Vol. 30, No. 16)

Scientists Make Headway with miRNA

Latest Tools and Technologies Help Untangle a Broad and Diverse Network of Interactions

  • Seeking Specificity

    Determining the specific targets, phenotypes, and pathways impacted by miRNAs can be challenging given the state of the art and the complexity of such interactions. Traditional approaches often utilize miRNA inhibitors and/or mimics for functional analyses. 

    “The problem with these types of studies is that a miRNA can regulate a large number of different targets,” noted Martin Kreutz, a scientist at Qiagen. “Using a miRNA mimic or inhibitor for functional analysis affects the regulation of all these targets, and one cannot determine how the regulation of a specific target contributes to a phenotype.”

    To address this vexing issue, Qiagen developed a new tool for functional analysis called miScript Target Protectors. The Target Protector is a single-stranded modified RNA that is transfected into cells where it binds to and thus blocks the miRNA binding site of a specific target gene. This allows characterization of the effects of downregulation of a single target, while leaving other targets unaffected.

    Applications include verifying miRNA binding sites, determining miRNA roles in specific pathways, characterizing regulation of the gene of interest, and confirming results obtained in other experiments, Kreutz said. “We’ve had a lot of interest in this since there is no other such system on the market.”

    Investigators must lay some groundwork prior to using the technology, however. “It is necessary for the scientist to be aware of the particular miRNA target they want to study. Secondly, they must decide on a binding site they trust. We can give advice on how to identify potential binding sites, but often the researcher is already aware of what binding site may be involved. If more than one site is suspected, it would be wise to perform studies of both.

    “Due to the complex miRNA binding behavior, specialized tools are necessary to investigate the effects of a single miRNA target interaction.” Kreutz cited the example of a study in which the Target Protector for the ADAR gene and a mimic for miR-1 were co-transfected into HeLa cells.

    “The miRNA called miR-1 downregulates expression of both ADAR and HDAC4. As assessed by Western blot, after 72 hours, the Target Protector specifically protected only ADAR from downregulation by miR-1, not HDAC4. This both verified the binding site targeted and demonstrates how this technology can be useful in deciphering the relevant players that contribute to a particular phenotype.”

  • Cryptography and miRNAs

    You may have never thought of molecular biology as an intriguing cloak and dagger operation complete with coded messages and cryptic communications, but that may change soon. Harry Shaw, staff engineer at National Aeronautics and Space Administration (NASA), is developing a model to attack problems in molecular biology using cryptography tools and communication signals analysis.

    “Many types of information are coded, encrypted, and involved in network security. There are similarities between biology and information processing in the real world. For example, in cryptography one looks at ways to provide two services: confidentiality in the form of codes and authentication, which validates the credentials of the sender and ensures that the message is unaltered in transmission.”

    According to Shaw, analogous molecular biological processes also seek authentication in recognizing the correct connections via structure and sequence and confidentiality in the form of codes, such as the genetic code, the protein alphabet code of 20 amino acids, and the histone code.

    For example, a gene is encrypted when it is not expressed and is decrypted when activated and undergoes transcription, and then subsequently reverts to the encrypted form.

    “miRNAs are short sections of noncoding RNAs that induce a broad pattern of protein translation modifications,” Shaw said. Modeling miRNA can be informative. The approach involves building a model employing virtual senders and receivers using miRNA and messenger RNA (mRNA) sequences as message traffic.

    A communication channel model can be created to provide a physical context for the message traffic, much like a wireless communications channel. The model allows for coding of secondary structure information on a probabilistic basis using entropy coding (already used in data-compression algorithms). Options for adding spectroscopic information to the encryption process are also being investigated.

    The goal of these models is to improve predictions of miRNA and mRNA seed-target binding. The process is extensible to include higher levels of complexity such as inclusion of RNA-induced silencing complex structures.

    “Eventually, such models will require validation using functional assays. Once the models are validated and calibrated, the results will foster better ways to engineer miRNAs with more specific binding properties for mRNA. This could help to improve therapies that modulate gene expression,” Shaw added.   

    The field of miRNA is still young and evolving. Many challenges remain, yet as the methodology continues to advance, new understandings are expected to emerge and spawn potentially impressive therapeutic applications. 

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »