Instrument Operational Qualification
Installation qualification/operational qualification has become a familiar term across a broad range of scientific sectors, referring to regulatory requirements for periodic verification of system performance. Operational qualification requirements for liquid-handling systems vary widely, depending on the instrument’s intended application, however the methods of verifying performance can be broadly divided into either gravimetric analysis or colorimetric-based technologies.
Traditionally, gravimetric techniques have been used for validation of liquid-handling equipment—both manual and automated—sequentially performing separate measurements for each pipetting channel. While this technique is still suited to some applications, it requires integration of a balance into the liquid-handling system. The trend toward high-density sample formats has also made gravimetric analysis impractical for use with many systems.
By contrast, colorimetric technologies offer a straightforward method for performance verification of all pipetting channels. Integrated multimode plate readers are now a common feature of automated liquid-handling installations, allowing the verification process to be fully automated, and even routinely scheduled. Several manufacturers offer colorimetric-based kits for liquid-handling instrument validation, the Artel MVS® (Multichannel Verification System) kit is an example (Figure 1).
In-Process Monitoring
Full sample traceability throughout processing is a key requirement for automated laboratory systems in a clinical setting. Once samples have been loaded onto the workstation, manual interaction with the instrument should be minimal (Figure 2). Software should generate a detailed log of all actions. For a complete record, it is not only necessary to confirm the presence of each sample at every step of the process, but also the information associated with each sample.