GEN Exclusives

More »

Tutorials

More »
Feb 1, 2012 (Vol. 32, No. 3)

Oligonucleotide Delivery and Purification

Tocopherol Modification Improves Product Purification and Aids Delivery into Cells

  • Enhanced Oligonucleotide Purity

    Click Image To Enlarge +
    Figure 2. IE-HPLC analysis of thiol-modified oligonucleotide crude, purified by standard cartridge and by tocopherol/cartridge methods.

    Interestingly, the purity of the oligonucleotides obtained using our cartridge model system was better than that provided by standard cartridge purification. This prompted us to extend our investigation and delve deeper into our data, allowing us to explore whether tocopherol conjugation could be used as an efficient method of oligonucleotide purification.

    Examples of the IE-HPLC analysis of the resultant oligonucleotides are shown in Figure 2. Specifically, expansion around the main peak illustrates synthesis failures. Although the standard purification method gives a relatively clean product when compared with the crude oligonucleotide, the tocopherol-based method clearly shows fewer failures.

    In order to demonstrate the functionality of the pure oligonucleotide, conjugation of thiol-labeled oligonucleotides (prepared with and without tocopherol) was carried out using 6-iodofluorescein (6-IAF), which is a common dye used in many detection applications. For example, this is often used to incorporate a fluorescein moiety into oligonucleotides used for detection.

    We have found that as the purity of the thiol-modified oligonucleotide increases, the efficiency of conjugation also increases. Use of the crude oligonucleotide gave ~80% labeling, whereas standard cartridge purification gave ~86% labeling and Link Technologies’ tocopherol/cartridge method gave >90% labeling (Figure 3).

    This clearly shows that the use of oligonucleotides purified using tocopherol results in a more efficient conjugation than either standard cartridge purification or using the oligonucleotide in its crude form. We have also demonstrated that the specific activity of the thiol-modified oligonucleotide is not adversely affected by the use of tocopherol.

    While the method has been described for the purification of thiol-modified oligonucleotides, this can also be applied to other modified oligonucleotides in those cases where it is possible to use a cleavable linker.

  • Conclusions

    Click Image To Enlarge +
    Figure 3. RP-HPLC analysis of conjugation reactions of thiol-modified oligonucleotides to 6-IAF, showing (1) unreacted 6-IAF, (2) failures, and (3) product.

    5´-Tocopherol modified oligonucleotide precursors produced by Link Technologies have proven to be versatile products for use in the synthesis of oligonucleotides with varied applications in drug discovery. Tocopherol is easily incorporated, with spacers if required, to the 5´-end of an oligonucleotide as a nontoxic cell delivery agent for therapeutic use.

    Its hydrophobic nature can also be utilized to facilitate preparation of highly pure thiol-modified (and potentially other) oligonucleotides for downstream applications such as bioconjugations, where purity is directly correlated with application efficiency.

    As a supplier of specialized reagents for oligonucleotide synthesis, Link Technologies offers everything required to synthesize custom oligonucleotides modified with tocopherol, either for therapeutic use or as a means of increasing the purity of the final product.



Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Block That Microbiome Metaphor!

Which way of thinking about the microbiome would best integrate the virome’s contributions?