Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Mar 1, 2014 (Vol. 34, No. 5)

NGS Systems Secure Place in Clinic

  • Next-gen sequencing (NGS), the media-friendly moniker for automated massively parallel DNA or RNA sequencing technology, has made the leap from a powerhouse tool for molecular biology research and drug discovery and development to the clinical arena.

    Not an easy feat for a complex, expensive technology that generates huge amounts of data requiring intensive analysis and interpretation.

    The first next-gen sequencer to receive FDA clearance is the Illumina MiSeqDx system, with other NGS instruments hot on its heels. NGS-based diagnostic tests and clinical research tools are already beginning to transform fields such as prenatal testing and oncology, even as predictions for the scope of their applicability continue to broaden.

    In a Perspective piece published December 19, 2013 in the New England Journal of Medicine, Francis Collins, M.D., Ph.D., and Margaret Hamburg, M.D., wrote about the first FDA authorization of a NGS instrument: “Clinicians can selectively look for an almost unlimited number of genetic changes that may be of medical significance. Access to these data opens the door for the transformation of research, clinical care, and patient engagement.”

    Illumina designed the MiSeqDx system specifically for clinical laboratories, making it affordable and easy to use to broaden its applicability.

    “At about the $10,000 threshold we started to see early clinical adoption of next-gen sequencing,” says Greg Heath, Ph.D., svp of in vitro diagnostics at Illumina. Initial applications in rare inherited diseases in children and end-stage cancer were driven primarily by medical need, and technological advances expanded the use of NGS into the area of noninvasive prenatal testing for aneuploidies, bringing with it a great deal of support from the medical community and healthcare reimbursers, according to Dr. Heath.

    “I think NGS will displace a lot of PCR-based tools,” predicts Dr. Heath.

    The most prominent emerging areas for clinical NGS growth, in his view, include genetic disease, with a particular emphasis on reproductive genetics, and oncology, in which “certain unique performance characteristics of the technology will make it possible to solve some of the fundamental problems in cancer,” such as the heterogeneity of tumors and the difficulty of working with FFPE samples.

    Other clinical applications where NGS may have a near-term impact are in transfusion and transplantation medicine. A bit farther off, applications will likely emerge related to methylation in cancer and immunosequencing.

  • Emerging Standards

    Nazneen Aziz, Ph.D., director of the College of American Pathologists (CAP), is an expert in genomics who has had a first-hand view of molecular genetics research since before the Human Genome Project, both in Harvard Medical School’s faculty and in the biotech industry, focusing on the discovery of new genes abnormally regulated in inherited disease, as well as on human genetic markers for diabetes and oncology drug development and for genetic tests to understand the risks for common diseases such as osteoarthritis and osteoporosis.

    Since joining CAP, Dr. Aziz formed a new committee on NGS, which has “come up with the first global standards on next-generation sequencing for accrediting labs offering this technology as a clinical test.” CAP released its initial standards in July 2012, with a revision in 2013, and will distribute another revision in 2014. The standards outline requirements for documentation requirements, validation for the wet bench and bioinformatics analysis, data storage, quality management, and other important considerations for the clinical workflow.

    NGS is a term used to describe high-throughput, massively parallel sequencing, in contrast to the lower throughput, earlier method commonly known as Sanger sequencing. As Dr. Aziz explains, the overall cost of NGS tests is about the same as for Sanger sequencing, but NGS yields much more sequence information in a single run, making it more efficient with a much lower per base cost.

    A number of companies offer NGS platforms and instruments for research use, among them Illumina’s HiSeq and MiSeq systems, Life Technologies’ Ion Torrent platform, Pacific Biosciences’ SMRT Sequencing-based PACBIO RS II instrument, and Complete Genomics’ nanoball array-based technology. (Life Technologies’ acquisition by Thermo Fisher Scientific was finalized February 4, 2014; Complete Genomics is a wholly owned subsidiary of BGI-Shenzhen.)

    The Illumina MiSeq Dx platform is the only one as yet granted FDA marketing authorization for clinical use. While the technology and chemistries in these platforms and others are quite different, “the overall processes are similar” in the sense that a clinical lab would use them essentially the same way—loading samples and generating sequence data—says Dr. Aziz. The bioinformatics pipelines of the available NGS platforms differ in some key aspects, she notes, but the information output is the same—sequence data.

  • Early Application

    Providing an overview of the earliest clinical applications of NGS, Dr. Aziz highlights the identification of variants in rare inherited conditions in children. Instead of putting a child with a constellation of nonspecific symptoms and no clear diagnosis through a barrage of tests, sequencing either the whole genome or the exome can help clinicians determine the genetic cause of the child’s condition in about 20–25% of cases. In some cases, they will discover a new mutation or gene variant and be able to characterize a novel monogeneic disorder.

    Another early application of NGS is cancer genomic analysis. “Everyone’s cancer is different at the molecular level,” says Dr. Aziz. “Cancer is no longer a disease of the tissue—like breast cancer or pancreatic cancer; you need to look at the molecular profile of each tumor.”

    NGS can quickly reveal the somatic variants in cancer. Resequencing throughout the course of treating a patient with cancer can identify new mutations that may be responsible for the development of drug resistance or guide treatment decisions and selection of new and experimental compounds when conventional therapies fail.

    In the future, NGS applications in the area of infectious diseases will likely increase, suggests Dr. Aziz. The technology offers advantages for identifying strains of microoganisms causing outbreaks, for example, or in personalizing therapy by testing a strain for resistance to antibiotic or antiviral medications.

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »