GEN Exclusives

More »

Feature Articles

More »
Oct 1, 2011 (Vol. 31, No. 17)

Natural Progression of Synthetic Biology

Vast Potential of Emerging Science Being Realized through Landmark Research

  • Promises for Clinical Medicine

    The construction of synthetic genetic circuits was pioneered in bacteria, and over a decade elapsed until these concepts were applied to mammalian systems. Kemmer et al. reported the first synthetic closed-loop mammalian genetic circuit designed to correct a pathological state. The authors took advantage of a modified version of HucR, a bacterial transcriptional repressor from Deinococcus radiodurans, which binds its operator hucO in the absence of uric acid.

    Upon sensing uric acid levels, this module triggers the synthesis of an engineered, secreted version of an Aspergillus flavus urate oxidase. In urate oxidase-deficient mice, an experimental model of hyperuricemia and gout, the authors reported that this system reduced blood urate concentration and uric acid deposition in the kidney.

    In another tour de force that promises to reshape our perspectives on cancer therapy, Anderson et al. introduced the idea that engineered bacteria could integrate information from multiple sources to recognize, invade, and destroy mammalian cancer cells. The authors genetically engineered an E. coli strain expressing Yersinia pseudotuburculosis invasin and, by placing this gene under a Vibrio fisheri quorum sensing operon, an anaerobically induced promoter, or an arabinose-inducible promoter, they linked bacterial internalization to environmental cues such as hypoxia, cell density, or inducible stimuli. This strategy opens therapeutic promises to engineer bacterial cells that can recognize a tumor microenvironment.

  • Drug Design

    Synthetic biology impacts several facets of the drug discovery process, and opens new perspectives toward addressing long-standing therapeutic challenges, such as infections caused by microbial biofilms, or antibiotic resistance, a crisis of global proportions. Illustrating the powerful applications in infectious diseases, Lu and Collins engineered the E. coli-specific T7 bacteriophage to express DspB, an Actinobacillus actinomycetemcomitans protein that hydrolyzes β-1,6-N-acetyl-D-glucosamine, a crucial adhesin from biofilms produced by many bacterial species.

    The initial phage infection of a bacterial biofilm causes the intracellular production of progeny phage and DspB, which are both released by the lysing cells. DspB degrades the extracellular polymeric matrix of the biofilm, and the phages re-infect neighboring cells, reinitiating the cycle. This strategy, which removes the need to deliver enzymes to the sites of an infection, reduced the biofilm cell counts by 4.5 orders of magnitude.

    In another study, the authors engineered a modified version of the M13 bacteriophage in which the lexA gene, a repressor of the bacterial SOS global response to DNA damage, was placed under the PLtetO inducible promoter. Combining antibiotic treatment with an antibiotic-enhancing bacteriophage increased the in vitro killing by several antibiotics and, in vivo, the survival of infected mice treated with ofloxacin.

    Another landmark study reported the engineering of a yeast strain to produce artemisinin, a component of first-line combination therapies for uncomplicated malaria. The only commercial source of artemisinin is the Chinese plant Artemisia annua L. (wormwood), where the compound is present at low concentrations, making therapy expensive.

    Chemically synthesizing this medication is also very costly. Ro et al. generated an artemisinic acid-producing Saccharomyces cerevisiae strain in three steps that involved manipulating its farnesyl pyrophosphate pathway to increase farnesyl pyrophosphate production and decrease its use for sterol synthesis; introducing the A. annua amorphadiene synthase gene to allow amorphadiene synthesis; and engineering an A. annua cytochrome P450 to facilitate amorphadiene oxidation into artemisinic acid. This engineered strain produced up to 100 mg/L artemisinic acid that was transported and retained on the outside of the yeast, facilitating subsequent purification.

    Ajikumar et al. reported the metabolic engineering of E. coli to produce taxadiene, the first committed intermediate of the potent anticancer medication taxol, which is produced by the Pacific yew tree (Taxus brevifolia). In an approach called multivariate-modular pathway engineering, the authors combined the upstream isoprenoid pathway, native to E. coli, with the downstream, synthetic taxol pathway, and simultaneously varied gene expression within each module.

    This allowed the expression of upstream and downstream pathways to be modulated by changing multiple parameters such as promoter strength or gene and plasmid copy numbers. This system yielded approximately 1 gram of taxadiene from a liter of culture, and represents a significant step toward producing taxol in a bacterial system.

  • Synthetic Genomes & New Fields

    One of the promises of synthetic biology is the possibility to engineer user-friendly hosts that convert biomass into fuels. Steen et al. metabolically engineered E. coli by disrupting fadE, the gene that encodes the first enzyme in β-oxidation, overexpressing the genes encoding thioesterase and acyl-CoA ligase, and engineering the Zymomonas mobilis pdc and adhB genes that encode pyruvate decarboxylase and alcohol dehydrogenase.

    This novel recombinant strain was able to produce biodiesel by the acyltransferase reaction between acyl-CoA and ethanol. Further engineering of this construct, by introducing an endoxylanase catalytic domain from Clostridium stercorarium and a Bacteroides ovatus, xylanase that were fused to the N-terminus of the E. coli OsmY protein, enabled growth on hemicellulose without the need for exogenously added enzymes.

    Another recent landmark was the chemical synthesis and assembly of a bacterial genome, Mycoplasma mycoides JCVI-syn1.0, from computer-designed sequences, and its incorporation into a new cell that is controlled by the synthetic genome.

    Pioneering the field of optogenetics, Yazawa et al. described a technology that allows protein-protein interactions to be controlled in response to light. This approach, called light-activated dimerization, relies on FKF1 and GIGANTEA (GI), two proteins that are involved in day-length measurement and control flowering in Arabidopsis thaliana.

    Illumination with 450 nm light is detected by a domain within FKF1 and induces a covalent bond formation between a cysteine residue and flavin mononucleotide, forming an FKF1-GI heterodimer. In response to light, the G-protein Rac1 was recruited in this system to the plasma membrane and induced the local formation of lamellipodia.

    With the birth of synthetic biology, science entered a new and exciting era. As practical applications for biotechnology and medicine already started to emerge, it is hard to envision an area that will not be impacted by this recent field. Amidst these transformations, it is noteworthy to remark that basic concepts, which in the early 1960s laid the foundations of gene regulation, are re-emerging within a more complex framework, to provide new perspectives about the dynamics of biological systems, and to unveil, as Jacques Monod so relevantly calls it, the music of the biosphere.


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Children and Antipsychotic Drugs

Do you think children and adolescents with behavioral problems are overmedicated?