Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Jun 1, 2010 (Vol. 30, No. 11)

Multiplexing Advances Redefine HTS

Novel Instruments, Comprehensive Services, and Streamlined Assays Boost Scientists' Efforts

  • Detection System

    Click Image To Enlarge +
    Mirrorball is a new laser scanning microplate cytometer that TTP LabTech says it designed with the needs of the antibody discovery industry in mind. It is reportedly sensitive enough to be able to detect low abundance antigens, works with the mix-and-read assay format, and can perform assays in a microplate format.

    Jas Sanghera, Ph.D., commercial director of TTP LabTech, introduced the company’s new technology. “Mirrorball, which is based on an array of mirrors, will complement our existing product line.”

    The Mirrorball configuration was developed as a result of input from the antibody discovery industry. The instrument is based on flow cytometry because of its ability to detect low-abundance antigens, including cell surface proteins. According to Dr. Sanghera, until now laser-scanning cytometers have not been able to provide the necessary sensitivity required for mix-and-read assays.

    “Mirrorball’s microplate cytometric technology make this an effective system for high-throughput antibody screening. While simultaneous laser scanning ensures that Mirrorball has the requisite multiplexing and analytical capabilities, the laser-scatter channel provides an independent method for cell- and bead-based identification. This design permits improved sensitivity when multiplexed with fluorescent reporters.

    “As the pharma industry is moving to biologicals as new drug entities, a rapid data-analysis platform is increasingly important. The Mirrorball scans the entire well, producing a true representation that allows you to see how the cells are being distributed. No other instrument can do that.”

  • Receptor Investigation

    Click Image To Enlarge +
    Multimode Tag-lite cell lines express SNAP-tag cell surface receptors, which remain fully functional and can be assessed through second messenger or phospho-ERK detection. When further labeled with Lumi4-Terbium, the same cells can be used for ligand binding, receptor dimerization, and internalization. [Cisbio]

    Rapid and sensitive assays for cellular receptors are in demand for both clinical and basic science applications. Cisbio has developed a line of products based on FRET.

    Tag-lite assays use a relatively undifferentiated cell line that provides a wide-ranging foundation for measuring cellular function, according to the company. The SNAP-tag labeling procedure (New England Biolabs) is used to couple a cryptate fluorophore to the receptors on the cell surfaces. Addition of a ligand carrying the second fluorophore will result in a powerful signal, forming the basis of this homogeneous assay, which requires no washing, much like ELISA-based procedures.

    Tag-lite has been engineered for highly selective ligand binding, receptor dimerization, and functional assays. Among recently developed products are Cellul’erk, for measuring phosphorylated-ERK1/2, and the IP One Tb assay, for detecting inositol(1)phosphate, a major product of the phosphatidyl inositol cascade.

    “For a given receptor, the same Tag-lite cell line can be used as a starting basis for these tests, which have all been streamlined and validated with prelabeled frozen cells,” stated Francois Degorce, director of marketing and communication.

    “Therein lies the breakthrough of the Tag-lite concept—enabling receptor investigation to address multiple angles while eliminating the need to develop different cells for each.”

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »