GEN Exclusives

More »

Feature Articles

More »
Dec 1, 2009 (Vol. 29, No. 21)

microRNAs Inform Cancer Research

Alterations in the Expression of miRNA Genes Contribute to Pathogenesis on Broad Basis

  • Radiation

    Dr. Slack has a novel approach to miRNA research. “My lab comes into miRNA studies with the perspective of ‘what’s in it for the animal?’. Papers have been published on miRNAs based on cell and tissue culture, but we have done much of our miRNA work in vivo in C. elegans and mouse.”

    Dr. Slack talked about his lab’s work on miR-34 and its response to radiation exposure. “miR-34 was first discovered in C. elegans, and a bunch of labs discovered that miR-34 was directly downstream of p53. Some groups showed that P53 was part of miR-34. We looked at the proliferation of miR-34 in p53’s role in cancer and its response to radiation.”

    When Dr. Slack first started working on miR-34, no one had yet knocked out miR-34. His group found that C. elegans with loss-of-function mutations in the miR-34 gene have an abnormal cellular survival response to radiation. “These animals are highly radiosensitive in the soma and radioresistant in the germline, showing a role for miR-34 in both apoptotic and nonapoptotic cell death in vivo, much like that of cep-1, the C. elegans p53 homolog,” he added.

    His group’s findings were additionally validated in vitro in breast cancer cells, where exogenous addition of miR-34 alters cell survival post-radiation. “So what we found confirms that miR-34 is required for a normal cellular response to DNA damage in vivo, resulting in altered cellular survival post-irradiation,” said Dr. Slack. “And this indicates potential therapeutic use for anti-miR-34 as a radiosensitizing agent in p53-mutant breast cancer.”

  • Applied Therapeutics

    Click Image To Enlarge +
    Researchers at Johns Hopkins have shown that miR-26a in a mouse model of hepatocellular carcinoma inhibits cancer cell proliferation. (Janaiah Kota, Nationwide Children's Hospital)

    Josh Mendell, associate professor of genetic medicine at the Johns Hopkins University School of Medicine, said that his lab has had a long-standing interest in miRNAs.

    “We have been particularly interested in understanding how miRNAs are regulated in cancer cells and how aberrantly expressed miRNAs influence cancer cell behavior. We have found that specific miRNAs are often downregulated in cancer cells and restoration of expression of these miRNAs can potently inhibit tumorigenesis. This led us to test the idea that delivery of such antitumorigenic miRNAs could represent a novel therapeutic strategy for cancer.”

    Dr. Mendell’s team focuses on liver cancer for many reasons. “The liver is one of the most accessible tissues for delivery of nucleic acid-based therapeutics. So it made sense to try this strategy first in a tissue where delivery would present less of a technical obstacle. Additionally, hepatocellular carcinoma is an aggressive cancer for which few, if any, effective therapies exist.  So there is a great clinical need for new therapeutics for this disease. 

    “To deliver the microRNA in our study, we teamed up with Reed Clark and Jerry Mendell’s groups at Nationwide Children’s Hospital to develop adeno-associated virus (AAV) vectors that would express the miRNA. This is a nontoxic viral gene delivery platform, currently being used in clinical trials for other diseases that can efficiently carry gene products to the liver.” 

    Dr. Mendell’s team demonstrated that hepatocellular carcinoma (HCC) cells exhibit reduced expression of miR-26a, a miRNA that is normally expressed at high levels in diverse tissues. They showed that expression of this miRNA in liver cancer cells in vitro induces cell-cycle arrest associated with direct targeting of cyclins D2 and E2.

    “Systemic administration of this miRNA in a mouse model of HCC using AAV results in inhibition of cancer cell proliferation, induction of tumor-specific apoptosis, and dramatic protection from disease progression without toxicity. We were excited by the potent therapeutic response as well as the apparent lack of toxicity of the miRNA treatment strategy. Since miR-26a is also lost in human HCC tumors, we think that with further study, this strategy may eventually see clinical use.”

  • Leukemia

    Florian Kuchenbauer, M.D., of the medical department at the University of Ulm, is an authority on the role of miRNA in leukemia. While the functional role of miRNA is becoming well defined, the role of passenger miRNA, or miRNA*, is still not clear. “We led the concept further through next-generation sequencing, allowing us to group miRNA/miRNA* duplexes. Furthermore, we tried to show involvement of both miRNA duplex strands in leukemia and normal hematopoiesis. Taken together, the novelty of the concept is that both miRNA strands can be potentially active when expressed and that miRNA and miRNA* strands underlie a dynamic regulation.”

    Dr. Kuchenbauer investigated nine deep-sequencing libraries from a variety of human and murine cells and used these to  determine the most abundant complementary strand for nonannotated miRNA*. He then calculated the ratio of miRNA/miRNA* for each miRNA duplex. In contrast to previous assumptions that one strand is highly dominant, “we found that only approximately 50% of the investigated miRNA duplexes exhibit high ratios with a dominating strand, 20% have intermediate ratios, and a remarkable 10% show low ratios, which indicate comparable expression of both strands.”

    Comparing miRNA/miRNA* ratios across the miRNA sequence libraries revealed that most ratios remain constant across tissues and species.

    “This could possibly allow for a novel classification of miRNAs into α-duplexes, miRNAs duplexes with a dominant strand, and α-duplexes with both strands being abundant,” concluded Dr. Kuchenbauer.  


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

New Drugs for Ebola

Do you think that biopharma companies should not have to go through the normal drug approval process in order to get potential life-saving therapies to Ebola patients more quickly?