Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Jan 15, 2009 (Vol. 29, No. 2)

Microfluidics Makes Strides to Fulfill Promise

As the Field Grows and Matures, It Is Becoming an Essential Tool in Product Development

  • Miniature Cell Culture

    Click Image To Enlarge +
    An automation-compatible 96-well array specifically designed to promote liver-specific activity of primary hepatocytes.

    Utilizing microfluidic devices for cell analysis is a new strategy holding great promise for many applications ranging from drug discovery to toxicity testing, according to Philip J. Lee, director R&D at CellASIC. “Microfluidics can be used to engineer microenvironments at the cellular size scale with miniaturization and automation for mimicking the physiological environment of cells and tissues. This capability allows exposing cells to changing flow environments to obtain a signal-response not previously possible.”

    The concept is based on using disposable, application-specific microfluidic plates and a universal flow control interface. The microfluidic plates hold sample solutions, media, and cells formatted with a microtiter plate footprint. A key feature is a perfusion barrier to control nutrient transport and cell localization. A glass coverslide bottom and transparent optical path allow for use in an inverted microscope or standard plate reader.

    “We are using this system to study liver toxicity as a predictive model of drug effects,” says Dr. Lee. “The current limitation with using cultured cells in toxicity studies is getting them to behave similarly to cells in vivo. We are, however, overcoming these hurdles using microfluidic cell cultures that allow maintenance of primary liver cells for use in high-throughput automated analysis.”

    The novelty of the automation-compatible system is that it “provides a design environment that mimics in vivo processes such as higher cell densities, cellular transport, and continuous perfusion. We built this system to fit average users in a typical biological workplace. Also, it is compatible with existing equipment and assays. Overall, this system allows a higher quality data at reduced costs.”

    Because hepatocytes are the best understood tissue model, the company’s initial applications for the microfluidic cell culture system will use these cells for both dose-response toxicity testing and for drug-metabolism studies.

Related content

Be sure to take the GEN Poll

Drug Price Hikes

Novum Pharma recently raised the price of an acne cream by over 3,900% in less than a year-and-a-half and Mylan increased price of EpiPen from $100 to $608 . Do you think pharmaceutical companies need to be subjected to price controls?

More »