GEN Exclusives

More »

Feature Articles

More »
Jan 15, 2009 (Vol. 29, No. 2)

Microfluidics Makes Strides to Fulfill Promise

As the Field Grows and Matures, It Is Becoming an Essential Tool in Product Development

  • Click Image To Enlarge +
    Modular microfluidic toolbox approach: Individual microfluidic chips (here depicted for continuous-flow PCR) the size of microscopy slides sit in a holder frame identical in geometry to a microtiter plate.

    Applications and products utilizing microfluidics are gaining momentum. The technology offers clear advantages in reducing reagent consumption, increasing speed and analytical performance, multiparameter testing, and user friendliness. The market is forecasted to grow to $1.9 billion by 2012, with the majority of revenue from diagnostic applications. 

    The “Lab Automation Conference” to be held in Palm Springs this month will showcase advances that include improvements in chip-to-world interfaces with standard geometries such as microscope slides and microwell plate formats, multiplexing capabilities, and off-the-shelf components for quick, low-cost implementation of microfluidic technologies.

    Although lab-on-a-chip technology has  been around for more than 20 years, its full promise has yet to be realized, says Holger Becker, Ph.D., founder and CSO of microfluidic ChipShop. “Many pioneering companies didn’t do well, and most laboratories do not yet incorporate microfluidics in their workflow,” Dr. Becker says. “We considered what we have learned from the microfluidics market in the last 10 years and how we could make this a more widely accepted and used technology.”

    The company decided that more off-the-shelf options were needed. “For many years, if you wanted to incorporate microfluidics, it was necessary to go through an engineering project with the associated cost, time and development risk. Our idea was to provide an affordable start to microfluidics. We developed a two-pronged approach. First, we developed a tool box-like approach in which we offer tailor-made components. Second, we designed these to interface with existing lab equipment.”

    Dr. Becker says the company now offers approximately 300 different chips with simple fluidic structures. “Companies can easily get hands-on experience for less than $300 and in a short time develop quick and dirty experiments to test their ideas. Then scientists can go to their boss to describe what works and what needs optimizing and how they can enhance success by building only a comparatively few structures.”

    One of the big advantages of this component-driven approach is that one can use existing automation. “We built these components for classical applications such as electrophoresis,” Dr. Becker notes. “Also, users can use their existing robotics because the external geometry of the components is standardized into two common formats: a slide footprint or a microtiter plate format. This allows most users to engage their existing robotics platforms.”

    For companies planning on integrating microfluidics into their research strategy, Dr. Becker has some advice. “It is best to speak to manufacturers as early in the process as possible. You need to be sure to develop the best design or it may be flawed and, ultimately, far too expensive. Your technology must be both functional and manufacturable at reasonable costs.”



Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Mindclones and Immortality

Is the idea of making a software copy of a human mind something in the realm of reality or science fiction?