Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Jul 1, 2013 (Vol. 33, No. 13)

HTRF Applications in New Drug Discovery

  • An increasing number of pharma, biopharma, and academic scientists are utilizing the homogeneous time-resolved fluorescence (HTRF) assay to help them in their drug discovery efforts. This was made obvious at the recent Cisbio meeting, “HTRF in Drug Discovery,” held in Avignon, France. A variety of new drug discovery applications that employ HTRF, along with the benefits and some of the drawbacks associated with the technique, were discussed.

    According to Cisbio’s Francois Degorce, conference chairman, Cisbio developed this time-resolved fluorescence resonance energy transfer technology to assess molecular interactions in a mix-and-read, no-wash assay format. A homogeneous, nonradioactive technology, the technique has been applied for over 15 years in drug research and in the investigation of various biological target types, such as G protein-coupled receptors (GPCRs), kinases, and biomarkers.

    “HTRF brings fluorescent resonance energy transfer technology (FRET) together with time-resolved measurement (TR). The method is homogeneous because there is no need for separation or liquid removal, and unreacted molecules do not need to be washed away to obtain data, as is the case in a number of other assay procedures,” he explained.

    HTRF is based on a pair of specific donor and acceptor dyes which, once coupled to interacting partners (e.g., antibody–antigen, ligand–receptor, etc.), and when brought in close proximity through this interaction, produce a specific fluorescence directly related to the amount of complexes formed. It is time resolved because uninformative and nonuseful signals decay much more rapidly than the signals observed after energy transfer by the acceptor. The result is a selective measurement of the assay specific signal, said Degorce.

  • Cytokine Research

    Because of the compatibility of HTRF with high-throughput screening (HTS), “we decided to use the technology for the detection of cytokines,” explained Lorena Kallal, Ph.D., manager, biological reagents and assay development, at GlaxoSmithKline in Collegeville, PA. “In addition, you do not have to tag or engineer proteins to detect them if you have antibodies that specifically recognize your protein.”

    Dr. Kallal, one of the speakers at the Avignon conference, noted that HTRF reagents tend to be less light sensitive and more stable than some other HTS-compatible detection systems.

    “We also found that once reagents were added, we could get the same results if we read the plate a few hours after adding reagent, or overnight,” she continued. “For automated assays, it helps if the incubation times are flexible, and it also gives scientists flexibility in how they want to run the assays.”

    Describing her team’s HTRF work with cytokines, she explained that since cytokines are secreted proteins, investigators have the option to test the supernatant only, to avoid interference from the cells in the well.

    “We found that there was no difference in the IL-8 and IL-1b assays whether we tested the supernatant only, or whether we ran the assay on plates where the cells remained in the well,” explained Dr. Kallal. “And for one assay, we actually saw better statistics in 1,536-well plates than in 384 well plates.”

    She added that although HTRF may not have the same sensitivity as some wash protocols, “if you have enough cytokine present, then there is no issue.”

  • Phenotypic Screens

    Click Image To Enlarge +
    A scientist at the Novartis Institutes for Biomedical Research examines one of the company’s compound libraries for potential new drug candidates to be used in an HTRF high-throughput screen.

    John Joslin, Ph.D., told the conference attendees about his experience with HTRF and phenotypic screens. Dr. Joslin is a research investigator in the assay development and high-throughput screening group at the genomics institute of the Novartis Research Foundation in San Diego. When running such a screen, his team tries to mimic the disease phenotype in vitro as closely as possible. This often means using primary human cells in their native state.

    “HTRF allows us to detect and characterize the endogenous levels of the protein in a high-throughput manner,” he said. “It’s also a technology that can be adapted and customized easily, provided you have good antibody pairs. Although there are other platforms that are more sensitive, these often are lower-throughput or more expensive.”

    In addition to classical in vitro biochemical screens, such as peptide phosphorylation assays, Dr. Joslin’s team has run several phenotypic cellular screens with HTRF as the primary readout.

    “HTRF allowed us to screen over three million compounds per screen in a short time period. All of the screens yielded promising new leads that are moving toward the clinic,” he pointed out.

    He added that the power of the approach comes from the design of the screen. “In one example, we collected samples from over 20 healthy human donors for our primary screen and screened approximately three million compounds using HTRF as the readout. There were other formats we could have chosen that may have allowed us to run faster and cheaper.

    “However, our goal was to ensure the primary screen was as close to the disease setting as possible—hence the use of primary human cells. HTRF is one technology that enables a phenotypic screening approach.”

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »