Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Jan 15, 2011 (Vol. 31, No. 2)

Houston Biostartups Strong in Innovation

Companies Ride Robust Economic Wave That's Been Washing Over the State of Texas

  • Improved Screening Tools

    Risk Assessment Laboratories is searching for clinical applications for proteomics data. It has identified five biomarkers for preterm labor. One of the biomarkers is pre-B-cell colony elongation factor, a master regulator of birth. “We want to rationally target biomarkers related to a disease,” says Kevin Rosenblatt, M.D., Ph.D., director of R&D.

    Fetal fibronectin is an FDA-approved marker for preterm labor. However, its positive predictive value is so poor that many obstetricians do not bother measuring it in cervical fluid. The biomarker panel identified by Risk Assessment Laboratories requires only a few microliters of a woman’s peripheral blood. Because the biomarkers are linked to biological mechanisms of preterm labor, they could lead to better drugs to prevent or treat preterm labor.

    Risk Assessment Laboratories is developing protocols to measure biomarkers using selective reaction monitoring mass spectrometry. This reagent-free method detects proteins directly, is highly specific, and measures multiple markers. “Our goal is to build assays that can be done in any lab on readily available and easy-to-use mass spectrometers,” says Dr. Rosenblatt. PerkinElmer, a maker of fetal diagnostic tests, is funding the preclinical trials.

  • Click Image To Enlarge +
    Nano3D Biosciences’ Bio-Assembler™ system cultures cells in three dimensions by magnetic levitation. The Bio-Assembler uses nanoparticle-based NanoShuttle-PL solution to deliver magnetic nanoparticles to cells. Magnetic drives then levitate cells to create the 3-D cell growth environment.

    Nano3D Biosciences sells the Bio-Assembler™ kit that grows three-dimensional (3-D) cells in 24 to 48 hours. The cells are first tagged with magnetic nanoparticles, then levitated by a magnet field to grow in three dimensions, as described in Nature Nanotechnology in April 2010. This method for growing 3-D cell cultures is faster than competing products, which take weeks, according to the company.

    Standard tissue culture cells grow in flat two-dimensions, and “gene expression and signaling are different from that found in vivo,” says Glauco Souza, Ph.D., CSO. The Bio-Assembler allows co-culturing of different cell types, and it supports the growth of 25 different cell lines. Researchers can use the kit for basic research, drug discovery, toxicity testing, and stem cell and regenerative medicine.

    The starter Bio-Assembler kit contains a single microwell and a device that creates a magnetic field. A six-well plate system is undergoing beta testing, and a 96-well plate is in development. The 96-well format will support high-throughput screening and allow toxicity testing in cells that represent in vivo conditions.

    In the long-term, the technology could create 3-D tissue for regenerative medicine. “It all starts with a fundamental building block of a better representation of living tissue,” says David Lee, president and CEO.

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »