Leading the Way in Life Science Technologies

GEN Exclusives

More »


More »
Mar 15, 2009 (Vol. 29, No. 6)

Dissecting Protein-Protein Interactions

SPR Facilitates the Understanding of Relationships that Can Lead to More Accurate Predictions

  • Click Image To Enlarge +
    Figure 1. Molecular basis of superantigen-mediated T-cell activation, disease, and therapy

    Nearly all cellular processes depend on protein-protein interactions. Therefore, understanding protein function and protein-protein interactions is key to gaining insights into the biochemical mechanisms that underlie disease and developing new drugs. Our current understanding of protein molecular recognition, however, remains far from comprehensive and impedes the drug development process.

    Label-free biosensor-based surface plasmon resonance (SPR) systems are now commonly used in the study of diverse biomolecular interactions, and have become, perhaps, the most widely accepted technology for quantifying their kinetic parameters, as these instruments allow real-time measurements. SPR analysis can be used, not only to provide fundamental insights into molecular recognition but throughout the protein therapeutic development process.

    Using SPR systems, one interaction partner is immobilized on a sensor chip surface, while the other flows over the surface via a microfluidic flow path. Binding is monitored in real time via changes in the refractive index that are proportional to alterations in mass concentration at the surface. The technique is noninvasive, enabling direct analysis in buffer, as well as in complex media such as serum or cellular extracts. The resulting plot of binding response over time is known as a sensorgram; it provides comprehensive quantitative information on the entire interaction process, including the kinetic parameters of the interaction. Additionally, when SPR analysis is applied at numerous temperatures to a particular molecular interaction, thermodynamic parameters can be determined.

    Our lab has used SPR technology extensively (Biacore™ 3000 from GE Healthcare), to investigate the molecular basis of disease caused by a family of bacterial toxins known as superantigens (SAGs) and to develop therapeutics against them. SAGs are proteins secreted predominantly by Staphylococcus aureus and Streptococcus pyogenes that bind simultaneously to class II major histocompatibility complex (MHC) and T-cell receptor (TCR) proteins on the surfaces of antigen-presenting cells and T lymphocytes, respectively (Figure 1a).

    SAG engagement of these cell-surface receptors leads to the hyper-proliferation of T cells and a systemic release of inflammatory cytokines. This results in a condition known as toxic shock syndrome that is characterized by high fever, erythematous rash, hypotension and, eventually, multiorgan failure and death.

    Currently, no drug or vaccine exists to specifically inhibit SAG-mediated disease. Thus, as a multilaboratory collaborative team, we have embarked on a strategy in the last several years to engineer protein therapeutics that abrogate the interactions between SAGs and their TCR-binding partners, thereby inhibiting SAG-mediated T-cell activation and disease (Figure 1b). Although SAGs bind to both MHC and TCR molecules in numerous ways, they nearly always bind to a single immunoglobulin domain of the TCR called the Vb domain (e.g., the variable domain of the TCR b chain). We have used yeast display directed evolution methods to create variants of TCR Vb domain fragments that bind specifically to individual SAGs, but with vastly increased affinities than the wild-type TCR molecule from which they originate.

    Yeast display is a directed evolution technique similar to phage display in that iterative rounds of random mutagenesis and the selection are carried out to mature the affinity of the protein of interest. Yeast display is distinguished by the fact that the protein that is of interest to evolve is displayed on the surface of yeast cells and the selection of improved binding variants is carried out by cell sorting in a flow cytometer.

    Our first SAG target was staphylococcal enterotoxin C3 (SEC3), and numerous rounds of yeast display-directed evolution applied to one of its TCR ligands, the mouse TCR Vb8.2 domain (mVb8.2), resulted in a highly mutated and affinity-matured variant TCR molecule. To determine precisely the degree of improvement between the affinity of the variant versus the wild-type mVb8.2 molecules, we used SPR analysis to measure the affinities and kinetics of binding to their common SAG target, SEC3.

    As shown in Figure 2a, the mVb8.2 variant incorporated mutations at nine amino acid positions and bound SEC3 with an approximately 1,500-fold increased affinity relative to the wild type, largely through a reduction in the off-rate of the interaction. Once we observed such a large difference in affinity between the wild-type and variant mVb8.2 molecules, we then went on to show that the affinity-matured variant could act as a competitive inhibitor of SEC3-mediated T-cell activation in vitro.

    This mVb8.2 variant was an ineffective inhibitor of SEC3-mediated T-cell activation and disease in vivo, however. We suspected that the still relatively low affinity of the variant (with a KD in the nanomolar range) was impeding its efficacy, and thus, we set out to further improve the affinity.

    While most directed evolution applications maintain sequence length while altering the sequence itself, we had strong evidence from some of our previous x-ray crystallographic and SPR analyses of a related SAG-TCR complex, that of streptococcal pyrogenic exotoxin C (SpeC) binding to the human TCR Vb2.1 domain (hVb2.1), which provided us the impetus to rationally alter our yeast display methods to “grow” a specific region of mVb8.2 toward its SAG-binding partner.

    We did this by selecting variants from clones that encoded longer, but still randomized, sequences of a particular loop. This time we targeted the SAG staphylococcal enterotoxin B (SEB), which is highly homologous to SEC3 and also binds to mVb8.2. Variants of mVb8.2 that exhibited longer loops consistently bound SEB with relatively higher affinity, as determined by SPR analysis (Figure 2b). We found that one of these variants bound SEB with an affinity of 50 picomolar, again primarily due to reduction in the off-rate, and was effective in protecting animals from lethal injected doses of SEB (Figure 2c).

    The use of SPR analysis of SAG-TCR interactions has been essential for pushing our work into the development of novel therapeutics, but has also helped bring us from applied back to basic research, allowing us to address some fundamental questions in protein-protein interactions.

  • Click Image To Enlarge +
    Figure 2. Engineering protein therapeutics to inhibit superantigen-mediated disease

Related content


GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
More »

Be sure to take the GEN Poll

What Does Brexit Mean for Biotech?

Do you agree with the contention that Brexit will NOT have a long-term negative impact on the British biotech industry?

More »