GEN Exclusives

More »

Feature Articles

More »
Aug 1, 2010 (Vol. 30, No. 14)

Disposable & Reusable Manufacturing Trends

Room Exists in Growing Market for Both Single-Use and Stainless Steel Systems

  • Click Image To Enlarge +
    Dasgip has introduced an iPad application for its Remote Control Suite that enables online bioreactor control. An overview on eight running reactors is shown, detailed information for reactor 1, including online values and history, is in the center, and controller details for selected process parameters such as temperature are on the right.

    Demand for single-use, disposable technology for unit operations such as buffer and media preparation, seed culture production, and virus inactivation, as well as for process development and manufacturing for both cell culture and microbial fermentation continues to increase. Mike Sattan, vp of marketing at New Brunswick Scientific (NBS), describes a growing shift “away from glass vessels—and the cleaning and validation required—and toward scalable single-use stirred tank bioreactors for R&D, process development, and production of seed cultures.”

    Single-use systems are “especially advantageous for process development,” says Ken Clapp, senior director, global marketing and product management at Xcellerex. They allow users to increase or decrease process scale, and to modify sparging, the number of probes, and the types of probes without having to completely change the system.

    Another continuing trend “is a huge demand” for real-time information and control through the ability to integrate and interface remotely with supervisory systems and analyzers, says Matthias Arnold, Ph.D., CSO at Dasgip. The ability to achieve on-stream feedback and process control will help to advance PAT and QbD initiatives.

    Leveraging the capabilities of the recently released Apple iPad™, Dasgip, which specializes in benchtop, parallel bioreactor systems for process development, introduced an iPad application for its Remote Control Suite that enables online bioreactor control.

    The company’s new iApp allows users to monitor and control process values in as many as 16 parallel reactors running at locations around the world. Display options include a choice of multiple windows, zoom, and rotation functions. A graphic timeline makes it possible to compare historical and real-time process data, and trend charts provide views of reference and process values as well as the control profile.

    Understanding the process “is all about information,” says Dr. Arnold; it requires precise, relevant, and reproducible data and access to the information in real time. Dasgip designed the iApp for two scenarios: remote monitoring of the control system—including data, process values, and alarms—from within the company; and mobile access from anywhere there is Internet access with an interface that allows for remote control of processes by individuals with the appropriate access level.

  • Modularity Enhances Flexibility

    Click Image To Enlarge +
    Pierre Guerin Technologies' TRYTONi series of open-design, modular, autoclavable bioreactors can be used for cell culture or microbial fermentation.

    “We continue to see growth in both the stainless steel and single-use markets, with increasing interest in biologicals, especially from biotech companies in China and India,” says Doru Felezeu, director of marketing and business development at Pierre Guerin Technologies. He also notes that “interesting applications are developing in green biotech along with a demand for reactors suitable for producing algae and biomass.”

    To satisfy market demand for greater flexibility and modular system design, Pierre Guerin, through its Biolafitte division, introduced the TRYTONi™ series of open-design, modular, autoclavable bioreactors that can be used for cell culture or microbial fermentation.

    This industrial version of the company’s TRYTON series of bioreactors is scalable from 1 L to 50,000 L. It is also waterproof and features a touchscreen user interface. Users can add or remove individual modules to customize the system for more or less complex operations. A key focus at Pierre Guerin over the next six months will be on the development of new software tools for process control.

    In June, Xcellerex began construction of a new biomanufacturing facility at its Marlborough, MA, headquarters to expand its contract services operations. This is the company’s second facility that will house its FlexFactory® modular single-use bioprocess manufacturing platform, in which unit operations are self-contained in their own controlled environment modules, eliminating the need for cleanroom facilities.

    Xcellerex and Pfenex announced in May that, together with their collaborators, they had demonstrated the capability to produce purified swine flu H1 hemagglutinin in 42 days, starting with the protein’s amino acid sequence. For this 24-month project funded by U.S. government defense agencies, Xcellerex contributed its microbial PDMax™ high-speed process-development system and its FlexFactory single-use manufacturing technologies to grow microbial production strains to high cell densities and to purify model vaccine and antibody molecules.

    Earlier this year, Xcellerex announced a collaboration with Humacyte to develop a manufacturing process for Humacyte’s lead regenerative medicine product—vascular grafts for transplantation—using Xcellerex’ XDR™ single-use bioreactor system on the FlexFactory platform.

    In development at Xcellerex is a redesign of the 50 L single-use vessel for the XDR system. The company has completed conversion of its 200 L, 500 L, 1,000 L, and 2,000 L vessels to a modular design. “This gives users more flexibility to locate the vessel remotely from the control system,” says Clapp.

    Xcellerex also completed a redesign of its controlled environment modules to support upstream and downstream unit operations in the FlexFactory, incorporating a modular design for ease of scale-up and added capabilities to control chromatography, filtration, seed reactors, and bulk handling of the biological products. Also, the new control module is more readily compatible with plant-wide data-management systems to facilitate the flow of manufacturing and process data.

    The primary local controller used to operate the XDR bioreactors is based on a Rockwell Automation  platform, coupled with Wonderware human/machine interface software to support GMP operations with a server class computer, RAID, and built-in redundancy for improved protection of manufacturing data. For companies that utilize an Emerson DeltaV automation platform, Xcellerex offers the comparable functionality available with the Rockwell-Wonderware control system, allowing companies to integrate Xcellerex process equipment into their existing infrastructure. 


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Connectomics Advocacy

How might connectomics maintain lasting support?