Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Dec 1, 2010 (Vol. 30, No. 21)

Biorepositories Brace For Greater Security

NCI Spearheading Development of Standardized Guidelines to Improve Operations

  • Turn-Key Biobanking

    The huge number of samples being generated for research has created great concern for their accurate and efficient management. Although there are many laboratory information management systems (LIMS) available, they greatly vary in sophistication and robustness.

    Thermo Fisher Scientific’s Nautilus LIMS has been on the market for several years, but was recently upgraded with an interface for an outsourcing agent. It was initially integrated with Fisher BioServices, but can be adapted to any partner willing to cooperate and build that end of the webserver, according to Dan O’Donnell, associate director, pharma, Fisher Bioservices.

    “What’s different about this system is that it’s a cooperative solution, with both on- and off-site storage samples, along with analytical data. A biorepository system may track data but not analytical data like ours does,” explained Trish Meek, director of product strategy, life sciences, informatics at Thermo Fisher.

    The two Thermo divisions partnered to create a sample- and data-management solution by linking the LIMS with internal inventory-management systems. This set-up provides a global view of inventory, centralized web-accessible data, a chain of custody, on-line sample requests, and tracking. In addition, this information can be integrated with laboratory instruments, assay/test requests, and results capture and reporting.

    An example of how this may benefit clinical-trial management was presented at the conference. Combined LIMS/IT inventory management provides tools needed to manage the entire process, from sample collection kit configuration to linking of analysis data to the sample. Additional benefits include automatic inventory recording, shipment tracking and visibility, transfer to lab processing, parent/child relationship for aliquots, and on-site/off-site repository inventory view.

    “We set up an inventory system for companies that have samples stored with us, which mirrors what their requirements are. For customers that aren’t integrated, we’ll set up a web-service that is a password-protected server where they can find samples and data, request samples to be shipped, and sort data,” O’Donnell added.

    A key advantage to this new system is that any new data can be uploaded into the permanent record and become available to everyone within the customer system to view and query. Potential future applications of the integrated system include stem cells and biologic API storage.

  • Building a Biorepository

    There are many factors to consider when building a biorepository. John MacNeela, manager of laboratory operations at Gilead Sciences,  provided an overview of key issues. Planning must include the purpose of the biorepository, design of the physical building, required infrastructure, and scope and execution of all operations.

    Initial considerations include proximity to air-transportation hubs, commercial real estate costs, availability of critical consumable items (dry ice, liquid nitrogen) via local vendors, and a location close to critical supporting elements required for operation.

    Transportation of biospecimens falls under federal and International Air Transport Association regulations. State and local regulations may exist as well depending on the type of biospecimen. Infectious samples that could adversely affect human health due to accidental exposure are considered biosafety level 3 or 4 specimens.

    The design of the biorepository must include several factors, including the role of the biorepository, the type of specimens (fluids, tissues, etc.), size, type of HVAC system, back-up generators, and whether to have a liquid nitrogen tank onsite. Storing liquid nitrogen onsite requires more space and the correct plumbing to handle its delivery but reduces costs for delivery. Equipment choices include stand-alone models versus built-in models. Freezer choice depends on the specimens being stored—the colder the required temperature, the higher the cost.

    Qualification of equipment and verification of an alarm system are also important. Alarm and thermal-monitoring systems (hard-wired versus wireless) have to be installed and it must be determined whether it will be a single or dual system. Security is a big issue—who has access to core operations and what type of monitoring and surveillance is required. Disaster recovery plans should have additional units for backup/emergency storage, an additional storage facility, and a backup generator.

    The decision to close a biorepository should consider a number of points, such as whether it has outlived its original intent, if the original mission has changed, if it is no longer profitable, or if it has sustained extensive damage so the specimen collection has been destroyed, or, if salvageable, needs to be moved to another facility.

    Each company must decide whether it is more feasible to outsource specimen storage to a biorepository or make a long-term commitment to onsite storage and operation of a facility, summarized MacNeela.

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »