Leading the Way in Life Science Technologies

GEN Exclusives

More »

Feature Articles

More »
Jan 15, 2012 (Vol. 32, No. 2)

Biobank Diversity Facilitates Drug & Diagnostic Development

  • Tissue Banks

    Tissue banks that provide tissues for transplantation can play an important role in biobanking through provision of tissue for research from well-defined donors. In this way, with appropriate consent, both normal tissue and tissue with specific pathologies could be made available for biobanking and research.

    John Armitage, director of tissue banking at the University of Bristol, sees much greater awareness among researchers studying human disease and treatments to use human tissue as an invaluable adjunct to inform and guide animal studies.

    Bristol Tissue Bank offers tissues for research from two main sources: donors where there is a medical contraindication to transplantation, and tissues that are currently not transplantable, e.g., retina. The Bristol Tissue Bank, which processes tissue from about 1,500 eye donors and 100 heart valve donors annually, strives to maximize the use of unsuitable tissue in line with the consent and wishes of donor families.

    “I would hope that, as biobanks become more established, the boundaries between certain types of biobanks and transplant tissue banks will disappear. Close cooperation and collaboration is the key to advancing the exciting opportunities offered by biobanks. I am sure that transplant tissue banks are in a position to support and promote biobanking. It would make sense for Bristol Tissue Bank to move forward into biobanking and this is currently being considered,” Armitage explains.

  • Population Banks

    Click Image To Enlarge +
    The longitudinal HUNT Study provides access to biomaterial samples drawn prior to, and after, disease onset. [HUNT Research Centre]

    Over the last 25 years, the Norwegian University of Science and Technology (NTNU) has collected biomaterial samples and associated phenotypic, lifestyle, genetic, clinical, and environmental data from the general population of Norway’s Nord Trøndelag region.

    The HUNT Study began in the early 1980s with subsequent studies taking place approximately every 10 years (HUNT 1–3). HUNT 4 is expected to begin in 2015. With a participation rate at 60–88% (30,000 participated in all three current studies), HUNT is a special source for longitudinal studies and allows access to samples drawn prior to disease onset, making early disease biomarker identification and validation possible.

    In 2005, the Norwegian government set up strong incentives for increased commercial activity within the country’s public universities and hospitals, and NTNU started a dedicated company for commercialization of the HUNT study. This company, HUNT Biosciences, holds an exclusive, commercial license to the population biobank material.

    “Commercialization is challenging within a strong academic scientific environment. In addition to making the internal changes required by industry, such as achieving ISO 9001 certification, the main challenge HUNT Biosciences faced was to figure out how to make the massive amount of population and biobank data accessible.

    “Imagine the matrix set up by 130,000 participants, more than 5,500 data variables, and 3.5 million aliquots of biomaterial topped with almost 50,000 genetic analyzes. It was important to visualize the most important cohorts within the data mass and to focus first on drilling that data down,” explains Håkon Haaheim, CBO.

    HUNT Biosciences started operations in 2009 and signed its first industrial collaborations in 2010. Product development takes time, still Haaheim is optimistic that the first diagnostic utilizations may hit the market next year and that an existing commercial pharmaceutical product will be released for new indications in 2015.

  • Dutch Medical Center Adopts Next-Generation Automated Biobanking System

    Click Image To Enlarge +
    Chest freezers within the Hamilton Storage Technologies BiOS system hold labware cassettes that store racks of sample tubes. The cassettes can be automatically pulled up using knobs.

    Scientists involved in the LifeLines Study at the University Medical Center (Groningen, The Netherlands) have become one of the first adopters of Hamilton Storage Technologies’ new BiOS system.

    “The Netherlands and Northern Europe are at the forefront of biobanking advancements today,” said Martin Frey, Ph.D., senior product manager of storage technologies at Hamilton Bonaduz (Switzerland). “There is a sharp focus on sample quality and these countries are pushing for new levels of standardization.”

    This is evidenced by large pan-European projects like the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI) and BioSHaRE and Dutch initiatives including String of Pearls, BBMR-NL and LifeLines, he added.

    LifeLines is a three-generation population-based study with 165,000 participants from the homogeneous Northern provinces of The Netherlands. The goal is to study universal risk factors, and their modifiers, for multifactorial diseases such as cardiovascular, diabetes, asthma/COPD, and depression.

    The project currently stores samples in more than 60 freezers. The samples include urine, plasma, serum, buffy coat, and DNA. Manual sample picking is time-consuming and exposes the stored samples to temperature and moisture fluctuations.

    With about three million samples in manual storage freezers and plans to have over eight million by 2017, LifeLines undertook an in-depth public tender process, with a clear focus on sample integrity and risk management. It ultimately chose the BiOS system, which was just introduced last month. Plans call for it to be built to specifications, delivered, and implemented next year, noted Dr. Frey.

    According to Marcel Bruinenberg, research lab manager for LifeLines, biobanking is all about long-term storage and the goal is to have viable samples that have been stored for as long as 30 years. Even as recently as ten years ago sample temperatures were not being tracked, he said.

    BiOS is Hamilton’s third-generation automated system designed for ultra-low temperature storage of sensitive biological samples. The system was designed to ensure the integrity of 250,000 to more than 10 million sample tubes at temperatures down to -85°C.

    “We are finding that scientific journals are now asking for proof that all samples in a study have been tracked and that temperature profiles have been maintained,” explained Dr. Frey.

    The solution for LifeLines also incorporates a special system for transporting the samples, using special transfer cassettes and chest freezers, from the central processing laboratory at the University Hospital to the central biorepository, which is about 6 km away, just outside the city.

Related content

Be sure to take the GEN Poll

Cancer vs. Zika: What Worries You Most?

While Zika continues to garner a lot of news coverage, a Mayo Clinic survey reveals that Americans believe the country’s most significant healthcare challenge is cancer. Compared to other diseases, does the possibility of developing cancer worry you the most?

More »