GEN Exclusives

More »

Feature Articles

More »
Jun 15, 2009 (Vol. 29, No. 12)

Alternative Feedstocks Boost Ethanol Production

Industry Increasingly Relies upon Cellulosic Biofuels to Meet Government Mandates

  • Manipulating Genomes

    Current industry biofuel production goals for reducing the carbon footprint envision a 20% reduction in CO2 from ethanol facilities, a 50% reduction for advanced biofuels, and an 80% reduction for cellulosic biofuels.

    Aristides Patrinos, Ph.D., president of Synthetic Genomics, stated that current energy-related carbon emissions total eight billion tons per year, about half of which remains in the atmosphere contributing to increasing greenhouse gas concentrations.

    Achieving zero net carbon emissions is possible, even with continued burning of fossil fuels, said Dr. Patrinos, but only with the development of advanced biofuel production processes, and carbon capture and disposal or recycling technologies. The concurrent development of hydrogen fuels and alternative biological energy sources will help reduce carbon emissions and greenhouse gas concentrations.

    Dr. Patrinos highlighted advances in genomics, structural biology, pathway analysis, and systems biology as driving forces in the move toward molecule-based cell simulation. He described ongoing work at The J. Craig Venter Institute to produce artificial chromosomes and achieve genome transplantation as stepping stones toward the propagation of synthetic genomes.

    This achievement will allow scientists to not only read, but also write, genetic code. Dr. Patrinos described a strategy of producing cassette-based combinatorial genomes at a scale of thousands to millions of genomes per day. These would then be screened for their ability to produce compounds that could be used as substitutes for petrochemicals and as designer fuels with advantageous properties. Synthetic genomics may yield microorganisms with novel capabilities, photosynthetic organisms able to generate valuable products directly from CO2, biological systems that increase recovery rates of subsurface hydrocarbons, or advanced plant feedstocks.

    Dr. Patrinos revealed that Synthetic Genomics plans to demonstrate proof-of-principle for the creation of a synthetic genome within the next few months.

  • Pretreatment Releases Sugar Content

    Badal Saha, lead scientist at the fermentation biotechnology research unit of the USDA’s Agricultural Research Service (ARS), began his talk with a status report on the fuel ethanol industry. He described the production of ethanol from corn as a mature technology, with U.S. ethanol production reaching nine billion gallons, or about 4.2% of gasoline usage in 2008.

    Almost all of this derives from corn, with one bushel of corn yielding about 2.7 gallons of ethanol and about 28% of the U.S. corn crop going toward ethanol production. Even if all the corn grain available were converted to ethanol, however, it would meet only 15–18% of current transportation fuel needs.

    Alternative feedstocks are needed to boost ethanol production, Saha said, and the 1.3 billion tons of biomass available in the U.S. would be sufficient to produce the total amount of oil the country imports each year. Advanced biofuels can be derived from lignocellulosic feedstocks, such as agricultural waste (e.g., corn stover, wheat straw, rice hulls), agricultural processing byproducts (e.g., corn fiber or sugar cane bagasse), forestry and wood processing waste, the paper portion of municipal solid waste, or dedicated energy crops such as switchgrass. The main challenge in converting lignocellulosic biomass to biofuel is breaking down the cellulose, hemicellulose, and lignin components to their basic sugars.

    A variety of pretreatment strategies have been devised, some of which can disrupt the lignin structure and solubilize the cell wall. Saha described a method of extracting sugar from hemicellulose, which comprises 35% of corn fiber and is made up of 70% carbohydrates.

    In this method, pretreatment of corn fiber in a dilute acid solution at moderate temperature is followed by enzymatic saccharification of cellulose, yielding up to 100% of the sugar content of the hemicellulose without generating fermentation inhibitors. With this strategy, saccharification and fermentation are combined in a single process. Saha described similar success applying this strategy to other feedstocks including wheat straw, barley straw, and rice hulls. Technological challenges remain, such as the need for more efficient enzymes for saccharification, new microbes that can ferment multiple sugars, better integration of process steps, and improved methods for recovery of dilute ethanol.

    Stephen Hughes, Ph.D., research molecular biologist at the USDA-ARS, described an automated process for high-throughput transformation (with bacterial xylose isomerase and xylose kinase genes), mutagenesis, and screening of yeast to select for fast-growing strains optimized for anaerobic growth on xylose.

    A key advantage of using yeast for cellulosic ethanol production is their ability to work over a broad temperature (<44oC) and pH (3.0–8.0) range to produce large amounts of sugar. GMAX-L is a genetically engineered yeast strain able to convert both xylose and glucose to ethanol. It produces 10–15% more ethanol than a strain that utilizes glucose alone.

    Dr. Hughes also reported ongoing work to achieve stable expression of a biocatalyst in yeast, which enables the fungi to produce biodiesel after ethanol production has completed. “Ethanol alone is not profitable; valuable coproducts will make biorefineries sustainable,” he concluded, explaining that advanced biorefineries would be able to use engineered yeast such as GMAX for simultaneous production of ethanol, alternative biofuels, plastics, chemicals, and animal feed.

    Algae is a viable feedstock for first-generation biodiesel and ethanol production plants, and is a promising resource for producing aviation fuels and biocrude for biogasoline, said Will Thurmond, president of Emerging Markets Online.

    “The U.S. and Europe cannot produce enough plant feedstocks to meet targets” for biofuel production—even with cellulosic corn—as defined by government mandates, which are largely being driven by a growing demand for energy independence and national security concerns, said Thurmond.


Add a comment

  • You must be signed in to perform this action.
    Click here to Login or Register for free.
    You will be taken back to your selected item after Login/Registration.

Related content

Jobs

GEN Jobs powered by HireLifeScience.com connects you directly to employers in pharma, biotech, and the life sciences. View 40 to 50 fresh job postings daily or search for employment opportunities including those in R&D, clinical research, QA/QC, biomanufacturing, and regulatory affairs.
 Searching...
More »

GEN Poll

More » Poll Results »

Climate Change and Disease

Are the incursions of dengue fever and West Nile virus into North America just the tip of the iceberg of insect-borne diseases that are migrating due to a warming planet?